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Asymptotic theory for optically thick 
layers: application to the discrete ordinates 
method 

Teruyuki Nakajima and Michael D. King 

Asymptotic expressions for the reflected, transmitted, and internal scattered radiation field in optically 
thick, vertically homogeneous, plane-parallel media are derived from first principles by using the discrete 
ordinates method of radiative transfer. Compact matrix equations are derived for computing the escape 
function, diffusion pattern, diffusion exponent, and the reflection function of a semi-infinite atmosphere 
in terms of the matrices, eigenvectors, and eigenvalues that occur in the discrete ordinates method. 
These matrix equations are suitable for numerical computations and are valid throughout the full range 
of single scattering albedos. The present formulations are validated by comparing them with established 
methods of radiative transfer. 

Key words: Multiple scattering, radiative transfer, asymptotic theory, discrete ordinates method. 

1. lntrbductih 

The study of multiple scattering in optically thick 
atmospheres has a long history of development, largely 
as a result of the simplicity of the asymptotic form of 
the radiation field deep within the medium. Within 
this region of a scattering and absorbing medium, the 
radiative energy density follows a diffusion equation.’ 
Theoretical studies of radiative transfer in plane- 
parallel atmospheres have shown that the radiative 
intensity field can be expressed in especially simple 
functional forms.2-7 For example, the reflected ~(0; 
--CL, ko, 4) and transmitted ~(7,; +p., po, 4) intensi- 

ties from a nonconservative and vertically homoge- 
neous plane-parallel layer of sufficient optical 
thickness T, can be written as 

ml exp( - 2k7,) 
40; --CL, IJO% 4) = d---IL, Fo, 4) - l _ p exp(-2kTc) 
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Z‘(Tc; + I’+ FLo, 4) = 
m exp( -KT,) 

1 - 12 exp( -2KTJ 

In these expressions k. is the cosine of the solar 
zenith angle, p is the cosine of the emerging zenith 
angle (in which the positive sign denotes downward 
propagating radiation and the negative sign denotes 
upward propagating radiation), 4 is the azimuth 
angle measured from the solar plane, F. is the 
incident solar flux, k is the diffusion exponent, K( l.~) is 
the escape function, I and m are scalar constants 
determined by the optical properties of the medium, 
and u,( -p,, po, 4) is the reflected intensity from a 
semi-infinite layer having the same optical properties 
as the finite layer. In addition, the intensity field 
deep within the layer at optical depth T can be written 
as 

u(T; *CL, CLOT 4) = 
ed --127) 

1 - 12 exp( -2k7,) 
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where P( &CL) is the diffusion pattern. These equa- 
tions show that the intensity field reflected, transmit- 
ted, and deep within an optically thick medium can be 
expressed in terms of simple functions and constants 
that depend on angle as well as optical properties of 
the layer. 

Recently Kingsyg and Nakajima and KinglO devel- 
oped methods for retrieving the single scattering 
albedo, optical thickness, and effective particle radius 
of clouds by applying asymptotic theory for plane- 
parallel atmospheres. In these methods, Eqs. (l)- 
(3), together with their conservative atmosphere 
equivalents, were used to derive relationships be- 
tween observed quantities (reflected or internal scat- 
tered radiation) and the inherent optical properties of 
the medium (optical thickness, cloud droplet radius, 
and single scattering albedo). Furthermore, King et 
al.ll showed that Eq. (3) agrees well with measure- 
ments of the internal scattered radiation field within 
a horizontally extensive and optically thick marine 
stratocumulus cloud layer. Asymptotic theory for 
thick layers also plays an important role in simplify- 
ing solutions of the radiative transfer equation in 
vertically inhomogeneous atmospheres12J3 and in geo- 
metrically complicated fractal clouds.14 

In spite of the advantages and interesting features 
of asymptotic theory for multiple scattering problems 
in optically thick atmospheres, access to asymptotic 
theory has been difficult, even for plane-parallel 
atmospheres. This is because it is first necessary to 
compute various functions and constants that appear 
in Eqs. (l)-( 3) before one can use these expressions to 
obtain the desired radiation fields. Lenoble’ sug- 
gests an iterative method to solve a characteristic 
equation for the eigenvalue k and eigenfunction 
P( + p). Sobolev5 uses a recurrence formula to solve 
this characteristic equation by expanding the diffu- 
sion pattern in a Legendre polynomial series. Both 
Sobolev and Lenoble suggest essentially the same 
method to solve the integral equation for u,( - p,, ~~ 
4). Once k, P( +l.~), and u,( -l.~, ko, 4) have been 
determined, K(b) can be obtained by iteration of an 
integral equation for K( CL). 

As an alternative method of solution, van de 
Hulst6J5 suggested using an asymptotic fitting method 
whereby computational results from the doubling 
method are fit to known general forms of the asymp- 
totic equations [such as Eqs. (l)-(2) and Eq. (3) at the 
midlevel T = 7,/2]. Duracz and McCormick16 de- 
rived expansions of the diffusion pattern as well as 
other asymptotic functions and constants in terms of 
the similarity parameter and the coefficients of the 
Legendre polynomial expansion of the phase function. 
Yi et aZ.17 further developed a parameterization for 
K(k) as a function of s that is applicable to water 
clouds when lo 2 0.5 and o. r 0.8. Since these 
series were expanded in terms of the similarity param- 
eter s = [(l - wo)/(l - ~ag)]‘/~, a function of single 

scattering albedo w. and asymmetry factor g, they are 
the most accurate for small values of s (weak absorp- 
tion). King8 and King and Harshvardhan’” pre- 
sented similarity relations for asymptotic constants I, 
m, k, and other constants not appearing in Eqs. 
(l)-(3), as a function of the similarity parameter for 
the whole range of single scattering albedo (0 2 
w. I 1). These parameterizations, however, do not 
extend to the functions u,( - p, ko, 4), K(k), and 
P( +- CL) that appear in Eq. (l), thereby requiring a full 
radiative transfer code to be employed to perform the 
calculations for arbitrary optical parameters. 

The intent of this paper is to present efficient 
numerical algorithms for deriving the asymptotic 
functions and constants that are valid for any single 
scattering albedo without resorting to numerical 
fittings. These algorithms are based on recent ma- 
trix formulations of the discrete ordinates method 
(DOM)1g,20 of solving the radiative transfer equation. 
Although many studies directed toward obtaining the 
asymptotic functions exist, as reviewed above, it is 
useful to present such an algorithm in a systematic 
way at this stage, since there is a renewed interest in 
DOM computer codes that are fast and stable for any 
plane-parallel atmosphere.21-23 Matrix formulations 
of the theory are more suitable than traditional 
functional analysis methods for numerical calcula- 
tions because of recently improved computer capabil- 
ity and large memory now available. In this paper 
we show that all the asymptotic functions and con- 
stants may be expressed in terms of eigenvalues and 
eigenvectors of one basic eigenvalue problem. Know- 
ing the asymptotic limit of the DOM is also useful for 
improving the efficiency of DOM computer codes 
since asymptotic theory permits one to bypass some 
numerical procedures that are unnecessary for opti- 
cally thick atmospheres. Although asymptotic for- 
mulas for vertically inhomogeneous stratification ex- 
ist, it is useful to have a more general transfer code 
such as a DOM with a built-in asymptotic routine 
that automatically works when the sublayer becomes 
thick. The purpose of this paper is to address these 
points. 

Since the structure of the matrices in the eigen- 
space takes on an important role in the present study, 
the formulations of the DOM method from Nakajima 
and Tanaka20,23 are rearranged and summarized in 
Section 2. The asymptotic limit of the DOM is 
derived in Section 3, followed by a discussion of a 
numerically efficient algorithm for obtaining the 
asymptotic functions and constants, presented in 
Sections 4 and 5. 

2. Matrix Formulation of the Discrete Ordinates Method 

A. Basic Equations 

The equation describing the transfer of solar radia- 
tion through a plane-parallel and vertically homoge- 
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neous medium can be written as24 dent equations (one for each Fourier component) as 

d4T; CL, ~0, 4) 
CL d7 = -47; CL, PO, 4) 

dUm(T; CL, PO) 
CL dT = -Um(T; CL, CLoj 

s 

1 

+ ‘/z h”h> CL’h?T; F’, kokb’ 
-1 

1 

ss 

277 

+wO 

4Tr 
@(p, 4; p’, $‘)u(T; CL’, ~0, +‘)d$‘dk’ 

-1 0 

+ 2 WIJ-, 4; ko, 4,)F0 exp(-T/v.0), (41 

where (a( FL, +; b’ , +‘) is the single scattering phase 
function normalized such that 

1 1 

ss 

2n 

- 

4-n 
@CL 4; CL’, 4’)d4’dr*’ = 1. (5) 

-1 0 

If @( p, 6; l.~‘, +‘) is a function only of the cosine of the 
scattering angle, then the product of the single scatter- 
ing albedo and the phase function @(cos 0) can be 
expressed as a finite expansion in Legendre polynomi- 
als of the form 

oo~(cos 0) = i qPJcos O), (6) 

where 0 is the scattering angle and P,(cos 0) is a 
Legendre polynomial of order 1. By making use of 
the addition theorem for spherical harmonics, we can 
express the phase function as 

oo@(cl., 4; k’, 4’) 

= hOb, CL’) + 2 m$l WP, P’bS 44 - 4’1, (7) 

where the azimuth-dependent redistribution func- 
tions hm( IJ-, F’) are given by6 

WIJ-, FJ.‘) = l$m ~lvYCLY?YP’), (8) 

with the renormalized associated Legendre polynomi- 
als Ylm(k) expressible in terms of the associated 
Legendre polynomials Pl”( CL) by25 

Y,“(F) = (I + mj! I I 
(1 - ml! 1’2pm(Fj 

l . 

By further expressing the intensity as a finite Fourier 
series of the form 

and making use of the orthogonality property of the 
cosine function, we can rewrite Eq. (4) as L indepen- 

+ WI-b PO) 

4n Fo exP(-T/iJd (11) 

B. Matrix Formulation 

When multiple scattering calculations with either the 
adding-doubling2’j or discrete ordinates21-23 methods 
are performed, it is advantageous to subdivide the 
angular interval [0, l] into N Gaussian quadrature 
points 0 < k1 < . . . < FN < 1 with mirror symmetric 
points on the interval [ -1, 0] for a total of 2N 
streams. Then, if the Gaussian weights are wl, . . . , 
WN, Eq. (11) can be rewritten as 

+ hm(*l-Q, -IJTL)U~(T; -I*n, Poj)IWn (12) 

for each of M solar incident directions /J-oj, j = 
1 . . 7 M. This expression can be compactly written 
in matrix form for each Fourier component as 

+M dU’(T) 
- - = --u’(T) + h’Wu+(T) 

dT 

where 

+ hTWU-(7) + SzE0(7), (13) 

u*(T) = [U% *l-h, P,)], i=l,...,N, 

j = 1, . . . , M; 

h’ = [?h~“PP,, l-$)1’ i,j = 1,. . . ,N, 

s+ = 
[ 
$hm(kl-h~ FjLj) 9 

I 
i= l,...,N, 

j = 1, . . . , M; 

M = [PAjl~ i, j = 1, . . . , N; 

W = [wi6hjl, i,j = 1 >-..> N; 

E,(T) = [exP( -T/ FojhjI, i,j = 1,. . . ,M. 

In these expressions U*(T) represents the N x M 
downwelling (+) and upwelling (-) diffuse intensity 
matrices for the mth Fourier frequency at optical 
depth T; h’ represents the redistribution (phase) 
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matrices for transmission (+) and reflection (-); S’ 
represents the redistribution matrices arising from 
single scattering out of the direct solar beam, and M, 
W, and E,(T) are diagonal matrices. Illustrations of 
the h- and S- matrices for a Henyey-Greenstein 
phase function and a phase function representative of 
clouds at visible wavelengths can be found in Ref. 26 
for m = 0 and 1, for which both phase functions have 
the asymmetry factor g = 0.841. 

C. Basic Solution 

In order to proceed further it is convenient to define a 
scaled intensity matrix ii+(~) such that 

where 

ii'(T) = w+&(T), (14) 

w+=JwBI, w- = wi. 

In this notation the square root of a diagonal matrix 
represents that matrix whose diagonal elements are 
the square roots of the diagonal elements of the 
original matrix. By using these definitions, Eq. (13) 
can be rewritten in the form 

with 

di?i*(T) 
+ - = -M-lc’(T) + &&a+(T) 
- dT 

+ ii'&(~) + !%‘E0(7), (15) 

(,+ = W-h’w-, $5 = W-S’. 

With this scaling we obtain the following equation for 
the combinations $+(T) = ii+(~) 2 C-(T): 

d@(T) 
-= 

dT 
-X$*(T) + FE,(T), (16) 

where X’ is the symmetric N x N matrix defined by 

X’ = M-1 - W-(h’ of: h-)W-, (174 

CF = w-(s+ 2 s-). (17b) 

By eliminating $-(T) from Eq. (16) we obtain the 
following ordinary differential equation for G+(T): 

d2$+(T) 
~ = G++(T) + gE,(T), 

dr2 
(18) 

where 

G = X-X+, (194 

g = -X-G+ - e-M,-‘, W) 

MO = [/J+js~It i,j = 1,. . . ,M. (194 

Equation (18) can readily be solved by eigenvalue 
decomposition of G if we diagonalize the asymmetric 

G matrix as follows: 

G = QL2Q-l, (204 

L = [his,~], i,j = 1 ,“‘, N, POb) 

where Q is the matrix containing the N eigenvectors 
and Ai are the nonnegative square-root eigenvalues of 
G. The decomposition of Eq. (2Oa) can be obtained 
by one of several methods, namely, direct decomposi- 
tion of the asymmetric matrix G,1s,22 square-root 
decomposition,20 or Cholesky decomposition.27 

The solution of Eq. (18) can be obtained as a linear 
combination of the following basis functions:20 

C(T) = (%(exp[-Ai(Tc - T)] + eXp(-&T)]S,), 

i,j = 1 , * * . , N, (214 

S(T) = (%(eXp[-hi(T, - T)] - eXp( -&T)}s,), 

i,j = 1,. . . > N, @lb) 

WC) 

The offset T, is necessary in order to stabilize the 
system of linear equations numerically for large 
values of 7,28 and results in all exponentials having 
negative arguments as required to avoid fatal over- 
flows for large values of TV. Finally, the solution of 
Eq. (15) can be expressed as 

ii'(~) = A’(T)(Y + B’(T)~ + V’EO(T), (22) 

where A’(T) and B’(T) are N x N matrices defined by 

A’(T) = QC(T) T QLS(T), (234 

B’(T) = QL-‘S(T) T &Z(T), Wb) 

V’ are N x M matrices defined by 

V’ = %[Qy + &MO-1 +- (X-)-l&-], (23~) 

and Q = (Qr)-‘, where QT is the transpose of 
Q. The matrices (Y and p are N x M matrices 
consisting of integral constants to be determined 
from the boundary conditions. Instead of the tradi- 
tional way of specifying downward and upward propa- 
gating intensities, we have separated the solution 
into two sets of functions, A’(T) and B’(T), which 
consist of symmetric and antisymmetric fields with 
respect to the optical center of the layer. 

D. Boundary Conditions 

The boundary value problem for a homogeneous layer 
of total optical thickness 7, can be obtained by inver- 
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sion of Eq. (22) and can be shown to reduce to the 
form20 

II Q+(O) - v+ 
Q-(7,) -V-E0(7,) ’ (24) I 

where 

A’ = A’(T,) = AT(O), (254 

B’ = B’(T,) = -BT(0). (25b) 

When the N x N scaled reflection and transmission 
matrices are defined as 

ii = %[A+(A-)-l + B+(B-)-‘I, (26) 

i’ = %[A+(A-)-’ - B+(B-)-‘I, (27) 

it follows from Eqs. (22) and (24) that the N x M 
scaled reflected and transmitted intensities can be 
reduced to the form 

(28) 

which is an expression of the interaction principle in 
the discrete ordinates method. Note further that 
the scaled reflection and transmission matrices are 
symmetric, since A+(A-)-’ and B+(B-)-l are both 
symmetric matrices. 

3. Asymptotic Limits of the Matrix Formulations 

A. Reflection and Transmission Matrices 

When TV is sufficiently large, the reflection and trans- 
mission matrices tend to analytically simple expres- 
sions known as asymptotic theory for thick layers. 
This can be shown by decomposing A+(A-)-’ as 
follows: 

A+(A-)-l = BQC(T,)(A-)-' - I, 

= 2[1 + &S(T,)LC(T,)-~Q*]-~ - I, 

= (A - &+a’)-’ - I, 

= A-1(1 - &+@A-‘)-1 _ I, 

= A-’ - 1 + A-‘@1 - a+~)-la+@&1, 

(29) 

and, in a similar manner, 

B+(B-)-’ = A-’ - 1 + A-‘&I - a-&la-@&l, 

(30) 

where I is the identity matrix and 

A = ‘/(I + aL@), (314 

g = @A-@ @lb) 

a+ = %[L - S(T,)LC(T,)-l], (31c) 

a- = %.[L - C(T,)LS(TJl]. (314 

In deriving these expressions we have made use of the 
well-known matrix identities 

(AB)-’ = B-‘A-l, (I - B)-’ = I + B + B2 + . . . , 

together with Eqs. (23) and (25). The advantage of 
decomposing A+ (A-)-’ and B+ (B-)-l as in Eqs. (29) 
and (30) arises from the fact that these matrices are 
now separated into T,-independent (A-’ - I) and T,- 

dependent terms, where the diagonal matrices a’ 
contain all the dependence on optical thickness. 

If we denote the minimum eigenvalue AN by K and 
take the limit as TV approaches infinity, the matrices 
a* tend to the following limit: 

I 

+k exp( 47,) 

Rj’ + 1 If: eXp(-kT,) ’ 
ifi =j =N 

. (32) 

(09 otherwise 

The minimum eigenvalue K that appears in this 
expression is the same diffusion exponent that ap- 
pears in Eqs. (l)-(3). Expression (32) further shows 
that all the elements of a* except for the Nth diagonal 
one become vanishingly small as the optical thickness 
increases. 

These results show that the diffusion exponent 
plays an important role in multiple scattering prob- 
lems involving optically thick atmospheres. This 
finding is not surprising in light of Eqs. (21a) and 
(21b), which clearly show that only the smallest 
eigenvalue contributes to the diffuse radiation field 
deep within an optically thick medium. This param- 
eter can readily be determined as the minimum 
positive square-root eigenvalue of G, defined by Eq. 
(19a). As such it is seen to depend solely on the 
single scattering phase function. In Table 1 we 

summarize values of the diffusion exponent obtained 
by solving Eq. (20a) for selected Fourier frequencies 
and for a Henyey-Greenstein phase function having 
an asymmetry factor g = 0.85, in which the various 
columns of this table apply to specified values of the 
single scattering albedo wo. These results show, for 
example, that the T,-dependent terms of the reflection 
and transmission matrices become increasingly inde- 
pendent of azimuth angle as TV increases. This is a 
result of the fact that k monotonically increases as 
Fourier frequency increases, which leads in turn to 

Table 1. Mlnlmum Elgenvalues for Several Fourier Frequencies and for 
Various Values of the Single Scattering Albedo ~0” 

Fourier 
Frequency 00 = 1.0 wg = 0.999 W” = 0.9 a,, = 0.6 

0 0.0000 0.0212 0.2371 

1 0.3658 0.3670 0.4731 

2 0.5794 0.5802 0.6558 

“Henyey-Greenstein phase function with g = 0.85. 

0.5695 

0.7256 

0.8402 
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greater damping of terms such as those appearing in 
expression (32). Table 1 further shows that the 
minimum eigenvalues for all the Fourier frequencies 
increase significantly as w. decreases. This implies 
that the radiation field becomes increasingly azimuth 
independent as absorption of the medium increases. 

We have compared the eigenvalues obtained by 
using our method with corresponding values obtained 
by Garcia and Siewert 2g for various Fourier frequen- 
cies and single scattering albedos. In all cases for 
which the eigenvalues were less than unity, our 
values agreed with theirs to at least five significant 
figures by using FORTRAN-77 single-precision calcula- 
tions. Since our method subdivides the angular 
interval [0, l] into N streams with mirror symmetric 
points on the interval [ - 1, 0] for a total of 2N streams, 
it necessarily follows that the DOM method leads to N 
discrete nonnegative eigenvalues of the symmetric 
matrix given by Eq. (20b). The principal difference 
between our method and that of Garcia and Siewert is 
that they obtain discrete eigenvalues only when the 
eigenvalues are less than unity. Since we have 
compared our radiation calculations with correspond- 
ing ones obtained with the adding-doubling method, 
which makes use of a totally different algorithm for 
calculating the intensity field, we are convinced that 
our algorithm is sufficiently accurate to permit multi- 
ple scattering calculations to be performed for most 
applications of interest in atmospheric physics. 

Returning to Eqs. (29) and (30) and noting the 
asymptotic limit of a%, we can show that 

[(I - a’q)-‘a’],- 

kk exp( -kT,) . 

1 k (1 - kq)exp( -kT,) ’ 
ifz =J = N. (33) 

I 0, otherwise 

where 

q = qNN (34) 

When we substitute expression (33) into Eqs. (26), 
(27), (29), and (30), it readily follows that the asymp- 
totic form of the reflection and transmission matrices 
in the limit of large optical thickness is given by 

&it,- 
k1 eXp( -2127,) 

1 - 1’ exp( -2kT,) 

ic * icT 

’ 
(35) 

+= 
k exp( -kT,) 

1 - Z2 exp(-2kT,) 
k * kT, (36) 

iz, = A-1 - I, (37) 

where 

1 = 1 - kq, (384 

ii = A-‘&, (38b) 

and &N is the Nth column of the & matrix. The 
matrix operation (*) denotes the dyadic, defined by 

and &is a column vector of length N. Note that Eqs. 
(35) and (36) have removable singular points for the 
0th Fourier frequency when w. = 1 (k = 0) such that 
energy is conserved according t,o 

ii = Ii, - +, 

+= 
1 

37, + 4) 
Ii * I@. 

It is thus clear from Eq. (40) why the scalar q is 
referred to by van de Hulst? as the extrapolation 
length, for it denotes an extrapolation of the optical 
thickness to a larger value appropriate for multiple 
scattering in optically thick layers. 

Comparing Eqs. (1) and (2) with Eqs. (35)-(37) we 
note that the escape function and asymptotic con- 
stants may be obtained in terms of matrices associ- 
ated with the eigenvalue problem of Eq. (2Oa). The 
column vector K is henceforth referred to as the 
scaled escape function. Fro*m Eqs. (35) and (36) and 
Table 1 we conclude that R, contains most of the 
azimuthal dependence of the reflection and transmis- 
sion matrices for large values of the optical thickness, 
since the optical thickness-dependent terms in these 
expressions are rapidly damped for large values of T, 

when the Fourier frequency increases. The formula- 
tion presented in Section 2 is nevertheless valid for all 
Fourier frequencies. Since the transmission matrix 
results from a small difference between two matrices 
having nearly the same values [namely, A+(A-)-l and 
B+(B-)-I], the computer code of Nakajima and Tana- 
ka20 will fail to calculate the transmission matrix for 
extremely large values of TV ( 2 106) by using the basis 
functions defined by Eqs. (2la) and (21b). The value 
of the critical optical thickness depends on the optical 
properties of the layer as well as the accuracy of a 
computer’s floating point calculations. However, this 
condition does not often occur for realistic atmo- 
spheric conditions, since it arises only when T be- 
comes negligibly small compared to R,. When such 
small value? of the transmission matrix elements are 
required, T can best be calculated by using the 
asymptotic expression given by Eq. (36). 

This numerical ill-conditioning, characteristic of 
many discrete ordinates implementations for large 
values of the optical thickness, can readily be avoided 
by using the scaling transformations introduced by 
Stamnes and Conklin30 and incorporated in the com- 
puter code of Stamnes et aLz2 In this investigation, 
however, we have demonstrated analytically that, 
when the discrete ordinates formulation of Nakajima 
and TanakazO is used, it is possible to derive the 
well-known asymptotic formulas for the reflection 
and transmission functions of optically thick layers 
that were previously derived by using rather different 
approaches.5,6 This necessarily leads to alternative 
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methods of computing the asymptotic functions and 
constants that arise in these formulas. This proce- 
dure is especially useful in remote sensing applica- 
tions in which the use of asymptotic formulas permits 
the analytic inversion of remotely sensed data with- 
out the need for large table lookups that are character- 
istic of conventional methods. 

B. Internal Scattered Radiation Field 

Another result of considerable importance in asymp- 
totic theory is the angular and vertical distributions 
of the intensity field deep within an optically thick, 
multiple scattering medium. The angular distribu- 
tion of the intensity field can be obtained by using the 
present matrix formulations by making further use of 
the interaction principle and the principles of invari- 
ance.31 Each azimuthal component of the internal 
intensity field at optical depth T within an optically 
thick layer of total optical thickness 7C can be obtained 
from the expressions 

a+(T) = (I - iiaii,)-‘+ati+(o), (41) 

it(T) = ii&+(T), (42) 
,. 1 

where R, and T, correspond to the scaled reflection 
and transmission matrices of a layer of optical thick- 
ness T, = 7 and Rb corresponds to the scaled reflection 
matrix of a layer of optical thickness Tb = T, - T, for 
which these matrices can be obtained from Eqs. 
(35)-(37) by letting T, = T and T, - T, respectively. 

Substituting Eq. (36) into Eq. (41) leads to the 
following expression for the downward propagating 
intensity field at optical depth 7 within an optically 
thick medium of total optical thickness 7,: 

ii+(T) = 
k exp( --IZT) 

1 - Z2 exp(-2kT) 

x (I - @ib)-lk * kTii+(o). (43) 

When we use Eq. (35) for both I& and I& it can be 
shown that 

V(T) = (I - iiaiib)-lir, 

= [(l - c, + cg) - c2Q(I - IQ--iii, (44) 

where V(T) is a column vector of length N and the 
scalars cl, c2, and c3 are defined by 

Cl = yaiiTii3Y(T), (454 

c2 = ybIiTv(T), (45b) 

c3 = -&&Tk * iiT+), (45c) 

with 

kl exp( -2kT) 

Ya = 1 - Z2 exp( -2kT) ’ 
(464 

kl exp[-2k(T, - T)] 

Yb = 1 - Z2 exp[-2k(T, - T)] ’ 
(46b) 

In order to proceed further, it is useful if we define 
the scaled diffusion pattern vectors 

i’+ = k(1 - 8,2)-1i2, (474 

$- = o+, (47b) 

which are both vectors of length N, independent of 
optical thickness. These vectors represent the angu- 
lar distribution of scattered radiation in the down- 
ward (+ ) and upward (-) propagating directions 
within the diffusion domain of a semi-infinite atmo- 
sphere. By making further use of Eqs. (31a), (37), 
and (38b), it is straightforward to obtain the following 
expressions for the scaled diffusion pattern vectors: 

fi+ = kA(2A - I)-li&, 

= f [(QL@)-1 + I]i&, 

= %(QN + k&L (484 

@- = k(1 - I + &,)(I - km”)-liz, 

= ++ - k(1 + @-Iti, 

=@+-k&,. (48b) 

The scaled diffusion pattern vectors must themselves 
satisfy the following normalization conditions: 

iiT++ = kQNT(2A - I)-‘&, 

= k&‘(eL@)-‘&, 

= 1, (494 

&‘+- = I+(@+ - k&), 

= 1 - kq, 

= 1. (49b) 

Substituting Eq. (44) into Eqs. (45) and making 
further use of Eqs. (47) and (49) permits the system of 
linear equations to be solved for the three scalars cl, 
c2, and c3, as outlined in Appendix A. The solution 
thus obtained can be written as 

(I - it,&-lit = 
1 - Z2 exp(-2k7) 

k - kP exp(--2k7,) 

x p+ - Z exp[-2k(T, - T)]$-). 

(50) 

Finally, substituting Eq. (50) back into Eqs. (43) and 
(42) leads to the following asymptotic solution for the 
downward and upward propagating intensities deep 
within an optically thick medium (see Appendix A for 
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further details): notation as 

?(T) = 
exp( -kT) 

1 - Z2 exp(-2kT,) 

x (+ - 1 exp[-2k(T, - T)]+] * eTG+(0). 

(51) 

Equation (51) is the matrix equivalent of Eq. (3) and 
has been derived from first principles of the radiative 
transfer equation. We see froAm Eq. (51) that the 
scaled diffusion pattern vectors P’ defined by Eq. (47) 
represent the angular distribution of scattered radia- 
tion for downward (+) and upward (-) propagating 
radiation deep within an optically thick atmosphere 
in the limit Tc --, CQ. The functions and constants 
that appear in asymptotic theory can now be obtained 
from the matrices, eigenvectors, and eigenvalues that 
occur in the DOM. 

C. Asymptotic Functions and Constants 

For an atmosphere in which radiation is incident only 
from the top and for which there are no embedded 
sources, we can write the interaction principle for 
reflected radiation as6 

2a 1 

ss 
R(Tc; I.4 4; CL’, 4’) 

0 0 

x 40; F’, PO, 4’b’d~‘d4’> (52) 

where R(?,; l.~, 4; lo,‘, 4’) is the reflection function for 
radiation incident from direction (CL’, 4’) and scat- 
tered into direction (CL, 4). By further expressing the 
reflection function as a Fourier series analogous to 
Eq. (10) and making use of the orthogonality proper- 
ties of the cosine function, it can be shown that 

s 

1 

u"KJ; -lJ9 PO) = 2 Rm(7c; P, CL’)~~(O; CL’, kob'db', 

0 

(53) 

which, in terms of matrix notation, can be written as 

u-(O) = 2RWMu+(O). (54) 

By multiplying both sides of this expression by W+ 
and comparing the resulting expression with Eq. (26), 
we find 

ii = 2W+RW+, (554 

R = ‘/2(W+)-1ii(W+)-1. (55b) 

A similar expression results for T if we neglect the 
role of direct (unscattered) radiation in comparison 
with the role of diffuse radiation. 

Finally, by noting that the Fourier decomposition 
of the incident solar beam can be written in matrix 

i=l,... ,N;j=l,..., M, 

(56) 

it is relatively straightforward to transform Eqs. (35), 
(36), and (51) to a form that can be compared with 
Eqs. (l)-(3). Making further use of Eq. (55b) we 
obtain the following expressions for the functions 
that occur in asymptotic theory: 

R, = %(W+)-‘fi.JW+)-l, (574 

K= 

p’ = 
$ 

; (W,)-le. 

W’b) 

(57c) 

In these expressions m is a scalar constant that 
depends on the single scattering phase function. Its 
value can readily be determined by normalizing the 
diffusion pattern as follows: 

1 l 

2 -1 s 
Fw(W+)-ye+ - iq, 

= 1, (58) 

where 1 is a unit column vector of length N. In 
deriving this expression we have made use of Eqs. 
(48) and (57~). F rom this normalization condition, 
together with Eqs. (48) and (49), it can readily be 
shown that the asymptotic functions and constants 
must satisfy the well-known normalization condi- 
tions: 

s 

1 

2 JG-Q’(~,)~dCI, = 1, (594 _ 
0 

s 1 

2 ~W’(--iW~ = I, (59b) -’ 
0 

2 
s 

’ [P(F)]2kdp = m. (5W 
-1 

Finally, the asymptotic constant IZ, which occurs in 
calculations of the reflected and transmitted flux, can 
be obtained from the following definition: 

s 

1 

2 %.)cLd~ = n- (60) 
0 
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4. Further Considerations for a Practical Method 

Although the formulations presented in Section 3 are 
sufficient for obtaining the asymptotic functions and 
constants for optically thick and vertically homoge- 
neous plane-parallel atmospheres, they are inefficient 
because they require the computation of the eigenval- 
ues and eigenvectors of a large (N x N) matrix if one 
needs to obtain a solution using a finite angular 
resolution with a large number of discrete quadrature 
streams N. Alternatively, the escape function can be 
obtained from an expression for the transmitted 
intensities for M arbitrary solar incident directions 
Poj, j = 1, . . . , M without the need to increase the 
value of N. If we consider the situation in which 
there is no incident radiation from the layer bound- 
aries, namely, a+(O) = ii- = 0, it readily follows 
from Eq. (28) that the scaled intensity matrices can be 
expressed as 

a'(~,) = -*+ - kV-EO(~,) + V+E&T~), (6la) 

i..(O) = -iiV+ - ti-E0(7,) + V-. (6lb) 

When TV is sufficiently large, ii+ reduces to -?V+. 
Making use of Eqs. (36) and (57b) and comparing the 
resulting expression with Eq. (2) leads to 

(62) 

where Kc, is a column vector of length M. 
Once the diffusion exponent has been obtained 

from Eqs. (20), the simplest way to obtain the diffu- 
sion pattern (for azimuth-independent radiation) is 
to expand it as a finite series in Legendre polynomials 
of the form (van de Hulst,6 p. 97) 

L+l 

a4 = 2 (21 + lWl(PL (63) 

where the coefficients gl are themselves polynomials 
in k-l -the so-called Ku%er polynomials. These 
coefficients can be obtained by downward recurrence 
of the following relation (van de Hulst,6 p. 94): 

(2 + l)g,+, - (22 + 1 - q)k-lg, + Zgl-, = 0, (64) 

whereg, = 1, g, = (1 - o,)/k, and w2 are the Legendre 
coefficients of the phase function defined by Eqs. (6) 
and (7). The asymptotic constants I, m, and n can 
readily be determined from the normalization condi- 
tions given in Eqs. (59) and (60). 

In order to compute the reflected intensity field in a 
semi-infinite atmosphere, denoted u,( -p., po, 4) in 
Eq. (l), we can make use of Eqs. (37) and (57a), 
together with the definition of the semi-infinite reflec- 
tion function: 

wlJ.L, PO> 4) = 
TUco( - l-b IJO, 4) 

P-OF0 
(65) 

In this case, however, it is necessary to interpolate the 

N x N values of the symmetric reflection matrix R, at 
quadrature points ki, i = 1, + . . , N to obtain values 
{I-Q’] and {Pojl. S uc an interpolation is especially h 
important when N I 10. An alternative approach is 
to make use of the Stamnes and Dale interpolation32 
method based on the formal solution of the radiative 
transfer equation in the limit TV --f 30: 

s 

7c 
u,-(O) = lim M-l E(T’)J-(T’)dT’, (f-33) 

7c-m 
0 

where the source matrix J-(T) follows from the 
right-hand side of Eq. (13) and is given by 

J-(T) = h-Wu’(T) + h+WU-(7) + S-Ed. (67) 

All the matrices appearing in these expressions have 
been defined previously, except that they apply to 
emergent directions kit, i = 1, . . . , N’ rather than 
the more numerous quadrature points ki, i = 
1 . * , N. Making further use of Eqs. (22) and (23) 
<ecan rewrite the N’ x M source matrix as 

J-(T) = [HC(T) + fiLS(~)]a 

+ [HL-‘S(T) + fIC(~)]fi + JO-E,(T), (68) 
c 

where H and H are N’ x N’ matrices and Jo- is an 
N’ x M matrix defined by 

H = (h+ + h-)W-Q, (694 

ii = (h+ - h-)W-i$, (69b) 

Jo- = h-W-V+ + h+W-V- + S-. (69c) 

Substituting Eq. (68) back into Eq. (66) and taking 
the limit T, + ~0 leads to an expression for the 
Fourier-dependent intensity field reflected from a 
semi-infinite atmosphere for arbitrary direction co- 
sines ki’, i = 1, . . . , N’ and boj, j = 1, . . . , M as 
follows: 

urn-(O) = ‘/2(-H + iiL) l (M, L)@‘A-‘V’ 

+ Jo- l (M, MOW,, (70) 

where the operator (*) is defined such that the 
matrices 

7 i,j = 1,. . . ,N’, (71a) 

Jo- l (M, MO) = i=l,...,N’; 

j = 1,. . . ,M. 0-1 

5. Numerical Validation of the Formulations 

In order to test the validity of the matrix formula- 
tions presented in Sections 2-4, we have computed 
the asymptotic functions and constants for a Henyey- 
Greenstein phase function having an asymmetry 
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Table 2. Diffusion Exponent k Derived by Several Different Methods0 

W” = 0.999 Wn = 0.9 con = 0.6 N Method 

0.02124 0.23713 0.56979 59 Asymptotic fitting 
0.02124 0.23713 0.56950 10 Recurrence 
0.02124 0.23713 0.56950 10 DOM 
0.02124 0.23713 0.56951 5 DOM 
0.02124 0.23718 0.57588 3 DOM 
0.02122 0.24100 0.61243 2 DOM 
0.02703 0.32477 0.90255 1 DOM 

“Azimuth-independent radiation for a Henyey-Greenstein phase 
function withg = 0.85. 

factorg = 0.85 and single scattering albedos w. = 1.0, 
0.999, 0.9, and 0.6. In Table 2 we summarize values 
of the diffusion exponent k obtained by using several 
different methods for the 0th Fourier frequency. 
In the present method, referred to as the DOM, the 
minimum eigenvalue K = A, has been obtained by 
solving Eq. (2Oa) for a Gaussian quadrature on the b 
interval [0, l] of order N = 1, 2, 3, 5, and 10. 
Furthermore, we have made use of the delta-M 
truncation method33 in which the redistribution ma- 
trices h’, and hence X’ and G, have been altered by 
modifying the Legendre coefficients of the phase 
function according to 

wz* = 
WI - wof(2Z + 1) 

1-f ’ 
1 = 0, * . . ) L, (72) 

where L = 2N - 1 and the truncation factor f is 
defined by 

f= wzN 
wo(4N + 1) . (73) 

When a truncation method is used, such as the 
delta-M method, we must transform the resultant 
diffusion exponent as follows: 

k = (1 - w. f&t--t+ (74) 

Asymptotic constant 1 is not affected by truncation, 
and thus the extrapolation length 4 must be scaled 
according to 

4’4 truncated/(1 - wg f). (75) 

In addition to the eigenvector/eigenvalue method 
outlined above, the diffusion exponent as well as 
other asymptotic functions and constants appearing 
in Eqs. (l)-(3) can be obtained by applying the 
asymptotic fitting method of van de Hulst.15,6 In 
this method, numerical computations from the dou- 
bling method are fit to known asymptotic expressions 
for the plane albedo, diffuse transmission, and inter- 
nal intensity field as a function of optical depth for 
optically thick layers. In Table 2 we summarize 
values of the diffusion exponent obtained by the 
asymptotic fitting method by using a doubling code 

having N = 59 Gaussian quadrature points on the 
interval [0, l] and without truncation.26,8 

Finally, we have computed the diffusion exponent K 
by using the recurrence method described by Sobolev.5 
In this method a characteristic equation is solved that 
leads to the following continued fraction: 

l-00= 
k2 

, (76) 

4k2 
a1 - 

9k2 
a2 - 

where 

a3 - . . . 

al = (21 + 1 - 01). (77) 

The sequence of positive minimum solutions of Eq. 

(7% ko, h ks, . . . , kN obtained by truncating to 
order N, is in general a decreasing sequence indicat- 
ing that the transmitted flux through optically thick 
atmospheres will always be underestimated when a 
low-order radiative transfer algorithm is used. Us- 
ing this feature we can calculate the minimum diffu- 
sion pattern with Newton’s method. The range of 
the search can readily be estimated from ko, kl, and k2 
since this is a rapidly converging series. 

In Table 2 we show that the DOM with N = 5 is 
sufficiently accurate for most applications of radiative 
transfer in optically thick atmospheres. Further- 
more, we find that this method provides the same 
solution fork as in the recurrence method. We have 
also checked that our solution has converged by 
comparing these computations with the DOM result 
obtained for N = 40. Even for a strongly absorbing 
medium, such as the ocean, the DOM solution with 
N = 5 leads to a more accurate estimate of the 
diffusion exponent than the asymptotic fitting method 
with N = 59. This is because the asymptotic fitting 
method is based on ratios of the global transmission 
obtained from numerical computations at three dou- 
bled optical thicknesses (namely, T, = 8, 16, and 32). 
As w. decreases, this method becomes increasingly 
less accurate because of the small values of the 
transmission in a highly absorbing medium. Al- 
though not presented in Table 2, we have also found 
that the delta-M method enhances the convergence of 
k as well as other asymptotic functions and constants 
when compared with corresponding results obtained 
in the absence of truncation. As pointed out by King 
and Harshvardhan,la the DOM with N = 1 corre- 
sponds to the delta-Eddington approximation, which 
is known to have large errors in the diffusion expo- 
nent when the single scattering albedo is small. 

In Table 3 we summarize values of asymptotic 
constants 1, m, and n derived by using three different 
methods for a Henyey-Greenstein phase function 
(g = 0.85) and for single scattering albedos w. = 
0.999, 0.9, and 0.6, for which all the computations 
apply to azimuth-independent radiation. In addi- 
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Table 3. Asymptotic Constants I, m and n Derived by Several Different 
Methods” 

wn 1 In n N Method 

0.999 0.81708 0.37769 0.90635 
0.81708 0.37769 0.90635 

0.81708 0.37769 0.90635 
0.81708 0.37769 0.90635 

0.81708 0.37769 0.90636 
0.81710 0.37766 0.90637 
0.81742 0.37724 0.90654 

0.9 0.12494 4.32592 0.44738 
0.12494 4.33017 0.44716 
0.12493 4.33036 0.44714 
0.12494 4.33017 0.44716 
0.12494 4.33010 0.44716 
0.12495 4.33212 0.44737 
0.11852 4.45945 0.44365 

0.6 0.01150 12.0149 0.23125 

0.01134 13.0016 0.22125 
0.01132 12.9873 0.22149 

0.01134 13.0016 0.22125 
0.01134 13.0035 0.22132 
0.00587 13.9176 0.21766 

-0.02659 15.3458 0.20242 

59 

10 
5 
10 
5 
3 
2 

59 
10 
5 

10 
5 
3 
2 

59 
10 
5 

10 
5 
3 
2 

Asymptotic fitting 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hvbrid 

“Azimuth-independent radiation for a Henyey-Greenstein phase 
function withg = 0.85. 

tion to the asymptotic fitting method, these constants 
have been determined by using the discrete ordinates 
method for which 1 can be obtained from Eqs. (38a) 
and (34j and m and n from the normalization condi- 
tions of Eqs. (58) and (60). In addition to the DOM 
results for various values of N, in Table 3 we present 
computational results obtained by using the hybrid 
method based on Eq. (62) for the escape function and 
Eq. (63) for the diffusion pattern, with the so-called 
KuSEer polynomials obtained from the recurrence 
relation given in Eq. (64). In the hybrid method a 
large number (Foj, j = 1, . . . , M = 40) of Gaussian 
quadrature points on the half-range [0, l] was used 
for angular integration of the normalization condi- 
tions, keeping the order of the Gaussian quadrature 
N for solving the eigenvalue problem of Eq. (20a) 
much reduced. In this way we were able to obtain a 
good estimate of 1, m, and n by using a quadraturiza- 
tion as small as N = 3 without a noticeable increase in 
the computational time required. As was found in 
Table 2, N = 5 is sufficiently accurate for both the 
DOM and hybrid methods. 

Values of the escape function, diffusion pattern, 
and plane albedo of a semi-infinite layer are summa- 
rized in Tables 4-6, in which the plane albedo of a 
semi-infinite layer is defined by 

s 

1 

= 2 R,‘(P., ~oWcL. (78) 
0 

Table 4. Escape Function K(p) Derived by Several Different Methods0 

WO p. = 1.0 k = 0.5 k=O.l N Method 

1.0 

0.999 

0.9 

0.6 

1.27141 0.86871 0.46733 
1.27141 0.86870 0.46733 
1.27141 0.86871 0.46743 
1.27143 0.86866 0.46861 
1.27155 0.86888 0.46251 
1.27141 0.86870 0.46733 
1.27140 0.86872 0.46706 
1.27144 0.86887 0.46847 
1.27036 0.86857 0.47501 
1.26375 0.86900 0.48605 

1.15505 0.78586 0.42189 
1.15580 0.78568 0.42182 
1.15580 0.78568 0.42191 
1.15581 0.78563 0.42297 
1.15583 0.78584 0.41749 
1.15580 0.78568 0.42182 
1.15579 0.78569 0.42158 
1.15583 0.78583 0.42285 
1.15477 0.78556 0.42872 
1.14868 0.78629 0.43892 

0.72565 0.31740 0.14140 
0.72877 0.31663 0.14113 
0.72872 0.31663 0.14116 
0.72809 0.31662 0.14146 
0.72125 0.31674 0.14020 
0.72877 0.31663 0.14113 
0.72877 0.31663 0.14106 
0.72828 0.31675 0.14130 
0.72059 0.31738 0.14191 
0.70157 0.32253 0.15028 

0.54111 0.09442 0.02543 
0.63289 0.07999 0.02259 
0.63252 0.07999 0.02259 
0.62764 0.08001 0.02262 
0.58402 0.08023 0.02226 
0.63289 0.07999 0.02259 
0.63287 0.07999 0.02258 
0.62613 0.08017 0.02241 
0.58912 0.08302 0.02150 
0.70172 0.07366 0.02261 

59 

40 
20 
10 
5 

20 
10 
5 
3 
2 

59 
40 
20 
10 
5 

20 
10 
5 
3 
2 

59 
40 
20 
10 
5 

20 
10 
5 
3 
2 

59 
40 
20 
10 
5 
20 
10 
5 
3 
2 

Asymptotic fitting 
DOM 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

aAzimuth-independent radiation for a Henyey-Greenstein phase 
function withg = 0.85. 

Since the DOM method of Section 3 provides solu- 
tions for these functions at Gaussian quadrature 
points (Fi, i = 1, . . . , N}, we have made use of cubic 
spline interpolation to interpolate the calculated val- 
ues to the direction cosines presented in the tables. 
It is likewise possible to use an analytic interpolation, 
such as the iteration of the source function technique 
employed by Stamnes and Swanson,lg although we 
utilized a simple spline interpolation here simply to 
intercompare results obtained by several different 
methods. In the hybrid method we recalculated the 
values at p. = 0.1, 0.5, and 1.0 after we obtained I, m, 
and n as in Table 3. Note that the results obtained 
for the diffusion pattern by using the hybrid method 
with M = 10 are nearly the same as the corresponding 
results obtained with the DOM by using N = 40. 
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Table 5. Diffusion Pattern P(p) Derived by Several Different Methods” 

WO p. = 1.0 p = 0.5 p = 0.0 CL = -0.5 CL = -1.0 N Method 

0.999 1.14862 1.06962 0.99639 0.92858 

1.14867 1.06961 0.99640 0.92859 

1.14866 1.06961 0.99640 0.92859 

1.14858 1.06961 0.99640 0.92859 

1.14867 1.06961 0.99640 0.92859 

1.14867 1.06961 0.99640 0.92859 

1.14866 1.06960 0.99640 0.92859 

1.14848 1.06953 0.99641 0.92868 

0.86576 
0.86574 
0.86573 
0.86566 
0.86574 
0.86574 
0.86575 
0.86588 

0.9 3.18110 1.44537 0.70379 0.36524 0.20067 
3.18906 1.44447 0.70363 0.36525 0.20071 
3.18612 1.44449 0.70363 0.36525 0.20061 

3.15646 1.44487 0.70349 0.36502 0.19909 
3.18908 1.44448 0.70363 0.36525 0.20071 
3.18904 1.44447 0.70363 0.36526 0.20071 
3.18621 1.44358 0.70423 0.36438 0.19871 
3.16600 1.47242 0.67105 0.36311 0.14979 

0.6 6.96337 1.12056 0.25374 0.08563 0.03745 
8.22991 1.04426 0.24591 0.08452 0.03729 
8.16156 1.04457 0.24592 0.08451 0.03723 
7.58614 1.04623 0.24446 0.08330 0.03496 
8.23026 1.04426 0.24591 0.08452 0.03729 
8.21849 1.04546 0.24693 0.08510 0.03454 
8.13160 0.93351 0.25586 0.02012 - -0.07255 
7.31692 1.30951 - -0.21699 0.08200 - -0.44897 

59 

40 
10 
5 

10 
5 
3 
2 

59 
40 
10 
5 

10 
5 
3 
2 

59 
40 
10 
5 

10 
5 
3 
2 

Asymptotic fitting 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hybrid 

Asymptotic fitting 
DOM 
DOM 
DOM 
Hybrid 
Hybrid 
Hybrid 
Hvbrid 

“Azimuth-independent radiation for a Henyey-Greenstein phase function withg = 0.85. 

This suggests that it is important to increase M to 
obtain greater accuracy while at the same time keep- 
ingN to a value as small as 10. Tables 4-6 show that 
it is necessary to use a quadraturization with N > 5 
to calculate these asymptotic functions for w. 2 0.9 
(N 2 10 for o. = 0.6) in order to guarantee accurate 
solutions. 

Table 6. Plane Albedo of a Semi-Infinite Atmosphere Derived by 
Several Different Methods= 

00 p. = 1.0 ~c = 0.5 p,c = 0.1 N Method 

0.999 0.78729 0.84940 0.91683 59 Asymptotic fitting 
0.78729 0.84940 0.91683 20 Hybrid 
0.78730 0.84940 0.91688 10 Hybrid 
0.78728 0.84937 0.91662 5 Hybrid 
0.78738 0.84939 0.91541 3 Hybrid 
0.78796 0.84932 0.91344 2 Hybrid 

0.9 0.10387 0.20846 0.44872 59 Asymptotic fitting 
0.10387 0.20846 0.44871 20 Hybrid 
0.10388 0.20845 0.44903 10 Hybrid 
0.10374 0.20830 0.44772 5 Hybrid 
0.10341 0.20814 0.43987 3 Hybrid 
0.10534 0.21258 0.42810 2 Hybrid 

0.6 0.01607 0.04523 0.17886 59 Asymptotic fitting 
0.01607 0.04523 0.17886 20 Hybrid 
0.01608 0.04521 0.17924 10 Hybrid 
0.01591 0.04511 0.17867 5 Hybrid 
0.01552 0.04484 0.17199 3 Hybrid 
0.01834 0.04853 0.16050 2 Hybrid 

“Henyey-Greenstein phase function withg = 0.85. 

Finally in Table 7 we present values of the reflec- 
tion function of a semi-infinite layer for overhead Sun 
(k. = 1) and for th e same Henyey-Greenstein phase 
function used previously. For comparison purposes 
we have used three different methods: (1) the asymp- 
totic fitting method based on radiative transfer com- 
putations by using the doubling method with N = 59; 
(2) Eq. (70) with the redistribution matrices h’, and 
hence all other matrices appearing in this expression, 
modified following the delta-M truncation method33; 
and (3) Eq. (70) with the truncated multiple-plus- 
single-scattering (TMS) method,23 which is an im- 
provement of the delta-M method that is particularly 
significant for improving the accuracy of intensity 
calculations and uses a small number of Gaussian 
quadrature points. For most applications, we have 
found that the TMS method with N = 10 is suffi- 
ciently accurate, whereas the familiar delta-M method 
requires a larger quadraturization N. This observa- 
tion implies that the TMS method improves the 
accuracy of intensity calculations even for optically 
thick layers, a feature not demonstrated in the origi- 
nal paper.23 

Accurate computations of the reflection and trans- 
mission functions of optically thick layers are gener- 
ally more difficult to obtain than they appear at first 
glance, since the effects of many different error 
sources tend to be amplified while the calculations are 
performed. For example, a small round-off error in 
the doubling method increases rapidly as the optical 
thickness of the layer increases.34,20 Since we were 
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Table 7. Reflection Function of a Semi-Infinite Atmosphere with Normal 

Incidence (p,, = 1) Derived by Several Different Methodsa 

MO p. = 1.0 k = 0.5 k=O.l N Method 

1.0 1.12835 0.94462 0.58135 59 Asymptotic fitting 
1.12838 0.94462 0.58136 20 TMS 
1.12957 0.94453 0.58073 10 TMS 

1.13520 0.94450 0.58540 5 TMS 
1.14132 0.94768 0.60031 3 TMS 
1.14444 0.92479 0.58336 2 TMS 
1.11212 0.94534 0.58278 10 Delta-M 

0.999 0.86185 0.75785 0.47984 59 Asymptotic fitting 

0.86188 0.75785 0.47985 20 TMS 

0.86307 0.75777 0.47928 10 TMS 

0.86866 0.75769 0.48362 5 TMS 
0.87502 0.76099 0.49707 3 TMS 

0.87983 0.73874 0.47829 2 TMS 
0.85469 0.75858 0.48132 10 Delta-M 

0.9 0.08513 0.11573 0.10576 59 Asymptotic fitting 

0.08515 0.11573 0.10576 20 TMS 
0.08612 0.11566 0.10548 10 TMS 

0.09036 0.11543 0.10767 5 TMS 
0.09424 0.11751 0.11266 3 TMS 
0.09433 0.10527 0.09876 2 TMS 
0.07860 0.11638 0.10732 10 Delta-M 

0.6 0.01020 0.01910 0.02877 59 Asymptotic fitting 
0.01021 0.01910 0.02877 20 TMS 

0.01063 0.01907 0.02868 10 TMS 

0.01225 0.01896 0.02925 5 TMS 
0.01320 0.01952 0.03027 3 TMS 

0.01249 0.01697 0.02718 2 TMS 
0.00567 0.01955 0.02989 10 Delta-M 

“Henyey-Greenstein phase function withg = 0.85. 

aware of this problem, we checked the results of the 
Nakajima and Tanaka20 algorithm and have found 
that it yields the same answer as the results shown in 
Table 7 up to T, = lo6 for double precision calcula- 
tions on an IBM 3081 computer. Therefore, another 
possibility for computing the asymptotic functions is 
simply to use the ordinary TMS method with the 
DOM algorithm of Nakajima and Tanakaz3 or Stamnes 
et a1.22 and let TV = 106. 

6. Concluding Remarks 

We have derived the asymptotic limit of the radiative 
transfer equation in optically thick and vertically 
homogeneous plane-parallel layers from first princi- 
ples by using the discrete ordinates method (DOM). 
Our derivation differs substantially from the heuris- 
tic thought experiment derivation of van de Hulst3,6 
and the mathematical derivation based on the formal 
solution of the radiative transfer equation presented 
by Sobolev.4J Furthermore, we have shown how to 
calculate the various functions and constants arising 
in asymptotic theory by using the matrices and 
eigenvalues routinely computed in discrete ordinates 
algorithms. The asymptotic expressions for the 
scaled reflection and transmission matrices, for exam- 
ple, are given in Eqs. (35) and (36), for which the 
scaled escape function vector is given in Eq. (38b), the 

scaled diffusion pattern vectors by Eqs. (47), and the 
scaled reflection matrix of a semi-infinite layer by Eq. 
(37). Equations (57) further show how to convert 
these scaled matrices and vectors into physical func- 
tions of p. and ~~ as in Eqs. (l)-(3). 

By using these and other formulas presented in the 
previous sections, we have found several different 
methods for computing the escape function, diffusion 
pattern, and reflection function of a semi-infinite 
layer. These methods include (a) the asymptotic 
limit of the DOM, namely the direct use of Eqs. (38b), 
(47), and (37), (b) a hybrid method based on Eqs. (62), 
(63), and (70), (c) th e d’ u-ect method, namely the use of 
the ordinary algorithm of the TMS method23 with 
sufficiently large ~~ (= 106), and (d) the asymptotic 
fitting method’5.6 in which doubling computations at 
three optical thicknesses (TV = 8, 16, and 32) are 
matched to the asymptotic formulas to obtain the 
required functions and constants. 

The aforementioned methods have several advan- 
tages and disadvantages. Method (a) is simple in its 
formulation but relatively inefficient in performing 
numerical computations. Method (b) is the most 
computationally efficient, but requires a more compli- 
cated formulation. In this method, a discrete quadra- 
ture of order N = 10 is sufficiently accurate for most 
applications. Method (c) is not limited to cases of 
large T, but requires a large T, to obtain the asymp- 
totic fields. This necessarily adds the possibility of 
numerical instability to the solution. The asymp- 
totic fitting method is highly stable but requires the 
use of the doubling method to compute the reflection 
and transmission functions to an optical thickness of 
at least 7, = 32. This method has been utilized 
extensively in our earlier work.8-11J8J6 

Comparison of the reflection function of a semi- 
infinite layer obtained by several different methods 
(see Table 7) has shown that the TMS method of 
Nakajima and Tanakaz3 improves the efficiency and 
accuracy of intensity calculations even for optically 
thick atmospheres. 

Finally, we have demonstrated the accuracy of a 
number of numerically efficient methods for calculat- 
ing the radiative intensity field in any plane-parallel 
optically thick atmosphere. Since DOM computer 
codes subdivide a vertically inhomogeneous layer into 
several homogeneous sublayers, it is possible to imple- 
ment the asymptotic formulations given here into 
DOM codes for rapid treatment of any sublayer of 
sufficient optical thickness (T, > 8). 

Appendix A 

To derive the expression for the internal scattered 
radiation field deep within an optically thick multiple 
scattering media, we begin by substituting Eqs. (47) 
into Eq. (44), leading to 

V(T) = ; [(l - Cl + C,)i)+ - C2@-1. (Al 
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Substituting Eq. (Al) back into Eqs. (45) leads to 

Cl = $ i(T&[(l - Cl + c,p+ - c&l, (A24 

C‘J = F &[(l - Cl + c,)@+ - c,@-1, (A%) 

c3 = 7 kTk * &[(l - Cl + c,)i)+ - cati-]. (-42~1 

By making further use of Eqs. (47) and (49) it follows 
that 

krfi,i)+ = kT@- 

= L (A34 

gT&,@- =$&z2gi+, 

= &[@f - (I - Q)i)+] 

= 1 - kI+%. Mb) 

Substituting Eqs. (A3) back into Eqs. (A2) results in 
the following system of linear equations: 

cl = f [(l - c1 + c,)Z - c&l - k&%)1, (A4a) 

c2 = 2 (1 - Cl + c3 
k 

- c2lL Mb) 

c3 = YaC21ZTii, (A4c) 

which can be solved simultaneously for each of the 
constants cl, c2, and c3. The solution of this system 
of linear equations can be obtained in the form 

c2 = (1 - c1 + c,)Z exp[-2k(T, - T)], (A5a) 
. . 

1 - Cl + c3 = 
1 - Z2 exp(-2kT) 

1 - 1’ exp(-2kT,) ’ 
Wb) 

Substituting Eqs. (A5) back into Eq. (Al) yields the 
following solution for column vector V(T): 

V(T) = 
1 - 12 expj-2kTj 

k - kZ2 exp(-2kT,) 

x p+ - 1 exp[-2k(r, - T)]@-). L46) 

This is just the solution given by Eq. (50). 
When Eq. (A6) is substituted back into Eq. (43), it 

readily follows that 

ii+(T) = 
exp( -kT) 

1 - Z2 exp(-2kT,) 

x p+ - 1 exp[ -2k(T, - T)]@-) * iiTii+(o). 

(W 

The derivation of the corresponding formula for a-(~) 

is considerably more difficult, requiring the evalua- 
tion of 

&,{@+ - 1 eXp[-2k(T, - T)]C'-) 

= (ii, - -y&i * kT) 

x p+ - z exp[-2k(T, - T)]i)-], 

= @- - z exp[ -2k(T, - 7)](i)+ - ki() 

- ybk * kT[fif - 1 exp[-2k(T, - ~)]fi-), (A8) 

in which we have made use of Eqs. (35), (46b), and 
(47). The last term in this expression can be further 
reduced as follows: 

ybk * i’{i)+ - Z exp[-2k(T, - T)]C-) 

= kl exp[-2k(T, - T)$, (A9) 

in which we have made use of the normalization 
conditions in Eq. (49). Finally, combining Eqs. (A8) 
and (A9) and substituting the resulting expression 
back into Eq. (A7) yields 

ti-(T) = &ii+(T), 

exp( -kT) 

= 1 - 1’ exp(-2kT,) 

X (@‘- - Z exp[-2k(T, - T)$"'] * kTii+(0). 

(AlO) 

Equations (A7) and (AlO) represent, respectively, the 
asymptotic solutions for the downward and upward 
propagating intensities deep within an optically thick 
medium. When combined these equations can be 
written as Eq. (51). 

The authors are grateful to N. J. McCormick, K. 
Stamnes, S. C. Tsay, and P. Gabriel for valuable 
comments on an earlier draft of this manuscript. 
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